Векторное управление режимами электропередачи на основе асинхронизированных синхронных машин




Page 1


background image







Page 2


background image

84

КАЧЕСТВО 

ЭЛЕКТРОЭНЕРГИИ

Векторное управление 
режимами электропередачи 
на основе асинхронизированных 
синхронных машин

УДК 621.316.7:621.3.05

В

 

статье

 

рассмотрена

 

система

 

векторного

 

управления

 

установившимися

 

режимами

переходными

 

процессами

 

и

 

потокораспределением

 

активной

 

мощности

 

в

 

сложнозам

кнутой

 

неоднородной

 

электрической

 

сети

Система

 

управления

 

предназначена

 

для

 

контроля

 

асинхронизированного

 

электромеханического

 

преобразователя

 

частоты

 

(

АСЭМПЧ

), 

врезанного

 

в

 

линию

 

электропередачи

Получившаяся

 

система

 

предназначена

 

для

 

качественного

 

улучшения

 

условий

 

протекания

 

переходных

 

процессов

вызванных

 

короткими

 

замыканиями

и

 

улучшения

 

параметров

 

установившихся

 

режимов

 

сети

При

 

этом

 

предложенный

 

подход

 

позволяет

 

существенно

 

повысить

 

качество

 

и

 

надежность

 

пи

тания

 

потребителей

 

после

 

ликвидации

 

коротких

 

замыканий

Рассмотрены

 

переходные

 

электромеханические

 

процессы

анализ

 

которых

 

показал

что

 

предложенное

 

векторное

 

управление

 

позволяет

 

существенно

 

сократить

 

качания

 

в

 

энергосистеме

 

и

 

колебания

 

активной

 

мощности

 

после

 

возмущений

В

 

работе

 

отмечено

что

 

применение

 

АСЭМПЧ

 

поз

 

воляет

 

на

 

практике

 

реализовать

 

метод

 

баланса

 

искажающих

 

мощностей

 

для

 

опреде

ления

 

источников

 

ухудшения

 

качества

 

электрической

 

энергии

.

Ключевые

 

слова

:

переходный процесс, 

неоднородная сеть, 

векторное управление, 

асинхронизированная 

синхронная машина, 

качество электроэнергии

ВВЕДЕНИЕ

 

При объединении крупных энергосистем (ЭС) возникает проблема регули-

рования значительных по величине перетоков активной мощности, кото-

рые являются следствием различных причин [1–3]. Поскольку развитие от-

дельных участков больших энергосистем может происходить независимо 

друг от друга, а техническое перевооружение сетевых организаций может 

отставать от роста нагрузки крупных узлов потребления, то в определен-

ный момент силовое оборудование энергосистемы становится неспособ-

ным  обеспечить  ее  надежное  функционирование  ввиду  недостаточной 

пропускной способности [1–3, 7–8, 10–13, 19–23]. Ее повышению способ-

ствует применение smart-технологий в энергетике, а в частности, асинхро-

низированный электромеханический преобразователь частоты (АСЭМПЧ) 

[3, 7–9, 16, 17].

В  силу  капиталоемкости  АСЭМПЧ,  его  установка  предлагается  на  су-

ществующей подстанции (ПС) с двумя автотрансформаторами 500/220 кВ 

параллельно автотрансформаторам [16, 29].

Характерно, что аналогичные работы ранее уже были предложены. На-

пример, предлагалось использовать токоограничивающий реактор (ТОР) 

параллельно с АСЭМПЧ, но только для анализа установившихся режимов 

(УР) без учета влияния генераторов на режимы ЭС и уровня напряжения 

на статические характеристики нагрузки СХН. В результате, неисследован-

ными остаются вопросы работы АСЭМПЧ в сложнозамкнутых неоднород-

ных ЭС в установившихся режимах и при переходных электромеханиче-

ских процессах (ПП). 

Выбор АСЭМПЧ в качестве устройства для создания гибкой связи об-

условлен целым рядом его преимуществ [3, 4, 7, 10, 11, 24]:

 

– широкий диапазон управления перетоком активной мощности;

 

– независимое регулирование реактивной мощности и напряжения в двух 

узлах подключения;

 

– обеспечение  полной  электрической  развязки  отдельных  участков  ЭС, 

что  позволяет  исключить  протекание  токов  короткого  замыкания  (КЗ) 

Супрунов

 

И

.

С

., 

ведущий эксперт ОРЭС 

АО «НТЦ ЕЭС Развитие 

энергосистем»

Дворкин

 

Д

.

В

., 

к.т.н., ведущий специалист 

ОРЭС АО «НТЦ ЕЭС 

Развитие энергосистем» 

Новиков

 

Н

.

Л

., 

д.т.н., профессор НИУ 

«МЭИ», в.н.с. ОИВТ РАН, 

заместитель Научного 

руководителя АО «НТЦ 

ФСК ЕЭС»

Новиков

 

А

.

Н

., 

с.н.с. ФБУ «НТЦ 

Энергобезопасность»







Page 3


background image

85

M

1

M

2

П1

П2

Регулятор

Т1

Т2

Тп1

Тп2

1

U

2

U

АСЭМПЧ

Z

П1

П2

q

q

d

d

Регулятор

в

fd

i

fq

i

л

P

Z

Z

с

U

Ротор

и кондуктивных помех из одного участка в дру-

гой;

 

– работа  в  качестве  накопителя  электрической 

энергии (ЭЭ).

МОДЕЛЬ

 

АСЭМПЧ

 

В

 

ОБЩЕМ

 

ВИДЕ

АСЭМПЧ включает в себя две асинхронизированные 

синхронные  машины  (АСМ),  соединенные  общим 

валом,  статорные  обмотки,  подключенные  к  трех-

фазной сети (одной или двум, электрически не свя-

занным),  преобразователи  частоты,  систему  воз-

буждения, ее регулятор и пр. (рисунок 1) [13, 23, 24, 

26–33]. Ротор каждой АСМ имеет две симметрично 

расположенные обмотки возбуждения 

d

d

 и 

q

q

, пита-

ние которых осуществляется от П1 и П2 переменным 

током с частотой 

.

Частота вращения поля ротора (

) формируется 

в зависимости от скорости вращения вала АСЭМПЧ 

(

в

) и выбираемой частоты ориентации 

ор 

, с кото-

рой необходимо обеспечить вращение вектора ЭДС 

E

 каждой из АСМ 

 [35]:

 

 = 

ор 

 – 

в

(1)

В УР частота вращения 

E

 имеет вид:

 

E

 = 

в

 + 

(2)

При подстановке (27) в (1) видно:

 

E

 = 

ор 

(3)

Таким образом, частота вращения ЭДС не зависит 

от частоты вращения вала 

в

. Частота 

ор

 принима-

ется равной частоте 

 той подсистемы 

, к которой 

подключена машина. Изменением 

E

 обеспечивает-

ся требуемый режим работы АСЭМПЧ.

Так  как  магнитный  поток  ротора  образуется  как 

результирующий двух потоков 

d

d

 и 

q

q

, создаваемых 

токами возбуждения 

i

fd

 и 

i

fq

, то соответствующий ему 

ток  ротора  можно  рассматривать  как  вектор  в  соб-

ственной системе координат ротора (

d

q

); ось 

d

 со-

впадает с осью обмотки 

d

d

, а ось 

q

 — с осью обмотки 

q

q

. Принимается, что ось 

d

 — мнимая, а ось 

q

 — дей-

ствительная.  Тогда  ток  возбуждения  определяется 

согласно выражению:
 

İ

f

 = 

i

fq

 + 

j

 ∙ 

i

fd

(4)

В описанных координатах уравнения Парка-Горе-

ва принимают вид:
 

1

 

u

̇

s

 = — 

x

s

 ∙ 

i

̇

s

 + (

p

 + 

j

ор

) ∙ (

x

s

 ∙ 

i

̇

s

 + 

e

̇

f

 

T

 

u

̇

f

 = 

e

̇

f

 + [

p

 + 

j

(

ор

 – 

в

)] ∙ (

 ∙ 

x

s

i

̇

s

 + 

e

̇

f

) ∙ 

T

f  

(5)

 

T

f

 ∙ 

p

в

 = – 

2

 = 1

 

Re

(

j

 ∙ 

e

̇

f

 

i

̂

s

), 

где  

u

̇

f

 = (

x

af

 ∙ 

u

̇

f

в

)/

r

f

 — приведенное напряжение воз-

буждения,  пропорциональное  напряжению 

u

̇

f

в

,  при-

ложенному  к  обмоткам  возбуждения; 

e

̇

f

  = 

x

af

  ∙ 

i

̇

f

  — 

приведенный ток ротора, пропорциональный току 

i

̇

f

;

T

f

  = 

x

/

r

f

  —  постоянная  времени  обмотки  ротора;

 = 

x

2

af

 /(

x

s

 ∙ 

x

f

) — коэффициент магнитной связи между 

обмотками статора и ротора; 

T

 = 

x

s

 

r

s

 — постоянная 

времени обмотки статора.

Регулированием  возбуждения  АСЭМПЧ  обеспе-

чивается  гармоническое  изменение  подводимого 

к обмоткам возбуждения напряжения управления 

u

̇

f

 

с частотой 

f

 [24, 34, 37–40]:

 

u

̇

f

(ор)

 = 

u

f

(ор)

 + 

ju

f

(ор)

(6)

Изменение модуля и фазы ЭДС 

E

̇

 обуславлива-

ется изменением напряжения возбуждения 

u

̇

f

у

 по за-

кону:
 

u

у

(ор)

 = 

0

 + 

 

W

i

(

p

) ∙ 

П

 

(7)

 

i

 

u

у

(ор)

 = 

0

 + 

 

W

j

(

p

) ∙ 

П

j

,   

 

j

где 

u

у

(ор)

  и 

u

у

(ор)

  —  проекции  напряжения  управле-

ния  на  оси 

q

ор

  и 

jd

ор

  соответственно; 

0

  и 

0

  —  па-

раметры  установившегося  режима; 

W

i

(

p

), 

W

j

(

p

)  —

передаточные  функции  АРВ  АСМ;  П

i

,  П

j

  —  пара-

метры УР.

Изменение частоты вращения 

f

 как функции ча-

стоты 

ор

 выбранного вектора ориентации и часто-

ты вращения вала преобразователя 

в

 может быть 

определено  из  условия 

обеспечения  установивше-

гося  режима  при  частоте 

вала 

в

, отличной от часто-

ты примыкающей подсисте-

мы 

ор

 (

f

 

ор 

– 

в

).

Для увеличения пропуск-

ной  способности  сети  рас-

смотрен  случай  установки 

АСЭМПЧ с включенным па-

раллельно машинам АТ [29, 

33]. В целях упрощения ком-

плекс  АСЭМПЧ  и  АТ  обо-

значается  как  устройство 

управления перетоком мощ-

ности  (УУПМ,  рисунок  2). 

Далее 

рассматривается 

УУПМ  с  АСЭМПЧ  200  МВт 

и АТ 500/220 кВ мощностью 

500 МВА с комплексным со-

противлением 60 Ом.

Рис

. 1. 

Принципиальная

 

схема

 

АСЭМПЧ

 

и

 

его

 

системы

 

управления

 2 (65) 2021







Page 4


background image

86

Изменение  перетока 

P

Л

A

 осуществляется путем 

регулирования  перетока 

мощности 

управления 

АСЭМПЧ 

P

у

.  При  этом 

активная  мощность,  про-

текающая через АТ, опре-

деляется  по  выражению 

[33]:

P

АТ

 = 

P

Л

A

 – 

P

у

.   (8)

При  уменьшении 

P

у

 

в  направлении  от  узла 

a

  к  узлу 

b

  уменьшается 

переток  мощности 

P

Л

A

  по 

воздушной  линии  (ВЛ). 

Уменьшение мощности 

P

Л

A

 по ВЛ происходит и при 

изменении направления перетока 

P

у

.

РАБОТА

 

УУПМ

 

ДЛЯ

 

УПРАВЛЕНИЯ

 

ГИБКОЙ

 

МЕЖСИСТЕМНОЙ

 

СВЯЗЬЮ

 

И

 

УВЕЛИЧЕНИЯ

 

ЕЕ

 

ПРОПУСКНОЙ

 

СПОСОБНОСТИ

Схема  исследуемой  неоднородной  сложнозамкну-

той межсистемной связи представлена на рисунке 3. 

В  определенных  режимах  может  быть  достигнута 

перегрузка  ВЛ  2  и  3  (220  кВ),  в  то  время  как  ВЛ  1 

(500  кВ)  останется  недогруженной.  Поэтому  возни-

кает потребность в управлении перетоком мощности 

по ВЛ 220 кВ в зависимости от режима с целью его 

ограничения 

P

ВЛ220

 ≤ 

P

доп

. При рассмотрении принци-

па  управления  перетоком  по  ВЛ  с  помощью  УУПМ 

вводится допущение, что расхождение векторов на-

пряжений 

U

A

 и 

U

B

 по концам ВЛ в узлах 

A

 и 

B

 электри-

ческой сети энергосистемы постоянно (рисунок 4), то 

есть [33]:
 

AB

 = 

Aa

 + 

ab

 + 

bB

 = 

Const

(9)

В  силу  численной  малости  величин  активных 

сопротивлений  участков  электропередачи  и  прини-

мая в качестве допущения, что модули напряжений 

в  узлах 

a

  и 

b

  остаются  неизменными  за  счет  регу-

лирования выдачи реактивной мощности АСМ, спра-

ведливо, что активная мощность 

P

Л

A

 и 

P

Л

b

 (рисунок 2) 

определяется векторами напряжений 

U

A

 и 

U

a

U

b

 и 

U

B

:

 

P

Л

A

 = 

P

A

max

 

sin

(

Aa

 – 

Aa

), 

(10)

 

P

Л

b

 = 

P

b

max

 

sin

(

bB

 – 

bB

), 

(11)

где 

P

A

max

P

b

max

  —  амплитудные  значения  активных 

мощностей, протекающих на участках A

A

a

 и 

b

B

.

В  границах  принятых  обозначений:  активная 

мощность, протекающая через АТ, определяется по 

выражению:
 

P

АТ

 = 

U

a

 

U

b

 

sin 

ab

 / 

x

АТ

(12)

Т1

Т2

АТ

A

B

ВЛ

ВЛ

АТ

P

АС ЭМПЧ

у

P

у

P

A

Л

P

УУПМ

a

b

b

Л

P

 

Рис

. 2. 

Структурная

 

схема

 

управляемой

 

ВЛ

 

с

 

УУПМ

 

Рис

. 3. 

Электрическая

 

схема

 

исследуемой

 

сети

 

с

 

комбинированным

 

устройством

Рис

. 4. 

Векторная

 

диа

грамма

 

напряжений

 

ВЛ

 

рассматриваемой

 

элек

тропередачи

у

P

ПС 1

ПС 2

ПС 3

3

3′

ПС 4

ПС 5

Н

Н

Н

Н

Н

Н

Н

ВЛ1

ВЛ2

ВЛ3

ВЛ4

ВЛ5

ВЛ6

ВЛ7

ЭЭС1

ЭЭС2

сеч

P

1

ВЛ

P

ВЛ8

2

ВЛ

P

3

ВЛ

P

ПС 6

ПС 7

500 кВ

500 кВ

220 кВ

220 кВ

220 кВ

220 кВ

220 кВ

220 кВ

у

P

Т1

Т2

АТ

P

АС 

ЭМПЧ

УУПМ

AB

Aa

ab

bB

.

A

U

.

a

U

.

b

U

.

B

U

G

G

G

G

КАЧЕСТВО 

ЭЛЕКТРОЭНЕРГИИ







Page 5


background image

87

из которого видно, что угол сдвига между напряже-

ниями 

U

a

 и 

U

b

 

x

АТ

 

P

АТ

 

ab

 = 

arcsin

—. 

(13)

 

U

a

 

U

b

Анализ выражений (10)–(12) показывает, что при 

P

у 

> 0 с уменьшением этой мощности, мощность 

P

АТ

 

и  угол 

ab

.  Тогда,  согласно  (9),  величины  углов 

Aa

 

и 

bB

 уменьшаются, активная мощность на участках 

электропередачи 

P

Л

A

 и 

P

Л

b

 тоже уменьшаются. Наобо-

рот, при увеличении мощности 

P

у 

> 0 значения опи-

санных величин увеличиваются.

Увеличение перетока активной мощности в сече-

нии вызывает снижение напряжения и, в свою оче-

редь,  увеличение  перетока  реактивной  мощности, 

что  приводит  к  росту  токовой  загрузки  ВЛ  2  выше 

допустимой. На рисунке 5 показана угловая характе-

ристика работы комбинированного устройства с уче-

том  режимных  ограничений.  До  значения  перетока 

активной  мощности  200  МВт  режимные  ограниче-

ния  не  требуются.  В  точке  1  вводится  ограничение 

мощности  вплоть  до  точки  2,  определяемое  необ-

ходимостью  поддержания  этого  значения  мощно-

сти  по  условию  балансовой  ситуации 

в  электроэнергетической  системе.  На 

участке  2–3  происходит  превышение 

длительно допустимого тока ВЛ 2, вы-

званное  ростом  перетока  реактивной 

мощности по ней. При этом необходи-

мо  уменьшать  передаваемую  актив-

ную мощность ниже 

P

ВЛ2_доп

. При даль-

нейшем  увеличении  передаваемой 

мощности  происходит  недопустимое 

снижение напряжения на подстанциях 

прилегающей  сети.  Для  недопущения 

снижения напряжения переток мощно-

сти по ВЛ 2 необходимо дополнитель-

но снижать. Прирост передаваемой по 

сети  активной  мощности  снижается 

вплоть до нуля, после чего максималь-

ный  допустимый  переток  в  сечении 

продолжает снижаться.

Управление в рамках логики (10)–(27) с помощью 

УУПМ позволяет повлиять на потокораспределение, 

разгрузив  слабые  участки  электропередачи.  При 

этом данный алгоритм работоспособен, как на при-

мере упрощенной сети (рисунок 2), так и на примере 

сложнозамкнутой ЭС (рисунок 3).

ФОРМИРОВАНИЕ

 

МАТЕМАТИЧЕСКОЙ

 

МОДЕЛИ

 

СЛОЖНОЙ

 

ЭС

 

ПРОИЗВОЛЬНОЙ

 

СТРУКТУРЫ

 

ДЛЯ

 

РАСЧЕТА

 

ПП

 C 

УУПМ

На  рисунке  6  представлена  принципиальная  схема 

сложнозамкнутой  неоднородной  ЭС,  которая  ис-

пользовалась для расчета электромеханических ПП. 

Электрическая  сеть  состоит  из  трансформаторов, 

АТ, ВЛ и нагрузок. Уравнения для этих элементов за-

писываются в системе координат 

d

 и 

q

 опорной ма-

шины.  Система  уравнений,  описывающая  каждую 

АСМ в осях 

d

 и 

q

 [17, 24, 30, 35], принимает вид:

 

U

d

 = 

s

 (

E

d

 + 

i

q

 ∙ 

x

q

), 

(14)

 

U

q

 = 

s

 (

E

q

 + 

i

d

 ∙ 

x

d

), 

(15)

 

p

 ∙ 

E

d

 = (

E

de

 – 

E

d

) / 

T

q

 – 

s

 ∙ 

E

q

(16)

Рис

. 5. 

Угловые

 

характеристики

 

мощности

 

исследуемой

 

связи

 

с

 

учетом

 

управления

 

перетоком

 

мощности

 

по

 

ВЛ

 2 (

ограничение

 

P

ВЛ

2

 = 200 

МВт

)

МВт

1600

1400

1200

1000

800

600

400

200

0

0

10

20

5

15

25

30

P

сеч

P

ВЛ2

1

2

3

Г1

Г3

Н

Н

Н

в

М1

М2

Т1

Т2

Регулятор

AT

Г2

Г4

Н

500 кВ

220 кВ

500 кВ

220 кВ

3

К

1

3

2

4

5

6

7

8

P

Z

Рис

. 6. 

Схема

 

исследуемой

 

ЭЭС

 (

стрелкой

 

указано

 

направление

 

перетока

 

активной

 

мощности

 

УУПМ

 

в

 

исходном

 

установившемся

 

режиме

)

 2 (65) 2021







Page 6


background image

88

W

p k

W

p k

e

i

E

W

p k

W

p k

U

1

1 +

(  )·

(  )·

(  )·

(  )·

U

pT

+

0

U

0

qe

E

1

1

e

T p

уq

V

1

1

e

T p

уd

V

вала

1

1 +

в

pT

вала жел

+

g

P

1

P

pT

g

жел

P

+

0

de

E

Z

6

0

U

k

0

k

1

1

1

1 +

pT

2

2

1

1 +

pT

+

+

0,5

+

0

P

k

0

отк

k

fd

d

e

i

E

qe

E

f

k

+ 1

f

k

f

k

+

+

f

k

de

E

1

1

U

U

1

1

P

P

1

1

1

1

отк

отк

fq

q

+

+ 1

+

1 +

Z

Z

Z

Z

Z

Z

Z

Z

Z

 

p

 ∙ 

E

q

 = (

E

qe

 – 

E

q

) / 

T

d

 – 

s

 ∙ 

E

d

(17)

 

ps

 = (

P

эл

 – 

P

Т

) / 

T

j

(18)

где 

U

d

 и 

U

q

 — напряжения в узле примыкания АСМ; 

—  скольжение  вала  АСЭМПЧ  относительно  син-

хронной скорости; 

s

 — синхронная скорость вра-

щения  электрической  сети; 

E

d

  и 

E

q

  —  переходные 

ЭДС; 

E

d

 

и 

E

q

 — ЭДС холостого хода; 

i

d

 и 

i

q

 — ток ста-

тора АСМ; 

x

d

 и 

x

q

 — синхронные индуктивные со-

противления АСМ (вводится допущение о магнитной 

симметрии  ротора  АСМ); 

P

эл

  и 

P

Т

  —  электрическая 

мощность машины, отдаваемая в сеть, и механиче-

ская мощность на валу машины; 

T

d

 и 

T

q

 — эквива-

лентные постоянные времени контуров ротора; 

T

j

 — 

постоянная инерции ротора АСМ.

АСМ  Г7  и  Г8  оснащены  АРВ  СД.  Регулирование 

возбуждения  производится  по  отклонению  напряже-

ния  на  зажимах  генератора  от  заданного  значения 

и его производной по времени, отклонению скольже-

ния вала АС ЭМПЧ от заданного значения и его произ-

водной по времени, а также по отклонению мощности 

управления 

P

у

 от заданного значения (рисунок 7) [24].

Вектор  вынужденной  ЭДС, 

E

e

,  раскладывается 

в синхронных осях. Угол 

e

 — это сдвиг роторов гене-

раторов подсистемы относительно синхронной оси, 

который определяется по формуле:

N

i

 = 1 

T

Ji

 ∙ 

i

 

e

 = —, 

(19)

N

i

 = 1 

T

Ji

где 

N

 — число генераторов в подсистеме; 

T

Ji

 — по-

стоянная инерции 

i

-го генератора; 

i

 — угол сдвига 

ротора 

i

-го генератора относительно синхронной оси. 

Если  разложение  ЭДС  холостого  хода 

E

,  в  син-

хронных координатах имеет значение 

E

q

 и 

E

d

, то в ко-

ординатах подсистемы 

, к которой подключена АСМ, 

оно меняется на 

E

q

 и 

E

d

 соответственно (рисунок 8).

Рис

. 8. 

Разложение

 

вектора

 

вынужденной

 

ЭДС

 (

а

и

 

ЭДС

 

холостого

 

хода

 (

б

в

 

синхронных

 

осях

с

q

с

d

1

q

1

d

e

E

qe

E

de

E

e

с

q

с

d

d

E

q

E

d

E

e

q

E

d

E

q

G

G

[

[

а)

б)

КАЧЕСТВО 

ЭЛЕКТРОЭНЕРГИИ

Рис

. 7. 

Структурная

 

схема

 

АРВ

 

АСМ

 

в

 

составе

 

АС

 

ЭМПЧ

 

в

 

общем

 

виде







Page 7


background image

89

Из рисунка 8 справедливы следующие соотноше-

ния (отдельно для каждой подсистемы) [25, 39]:
 

E

q

 = 

E

q

 

cos

(

e

) + 

E

d

 

sin

(

e

(20)

 

E

d

 = –

E

q

 

sin

(

e

) + 

E

d

 

cos

(

e

).    

Закон регулирования возбуждения АСМ в общем 

виде:
 

V

у

d

 = 

E

d

0

 + 

V

s

 (

s

) + 

V

P

 (

P

), 

(21)

 

V

у

q

 = 

E

q

0

 + 

V

U

 (

U

), 

(22)

где 

V

s

 — закон управления по отклонению скольже-

ния  вала; 

s

  —  величина  отклонения  скольжения 

вала 

s

V

P

 — закон управления по отклонению пере-

даваемой  мощности; 

P

  —  величина  отклонения 

передаваемой мощности 

P

V

U

 — закон управления 

по  отклонению  напряжения  на  выводах  комбини-

рованного устройства; 

U

 — величина отклонения 

напряжения 

U

V

у

d

  и 

V

у

q

  —  проекции  напряжения 

возбуждения АСМ; 

E

d

0

 и 

E

q

0

 — начальные значе-

ния ЭДС холостого хода АСМ.

Используя (20)–(22), проводится обратный пере-

ход к синхронным осям:
 

E

qe

 = (1 + 

k

f

)(

V

у

q

 

cos

(

e

) – 

V

у

d

 

sin

(

e

)) – 

k

f

 

E

d

 

(23)

 

E

de

= (1 + 

k

f

)(

V

у

q

 

sin

(

e

) – 

V

у

d

 

cos

(

e

)) – 

k

f

 

E

q

,   

где 

k

f

 — коэффициент обратной связи по току ротора 

АСМ.

РАСЧЕТ

 

ПП

 

В

 

ЭНЕРГОСИСТЕМЕ

 

БЕЗ

 

УЧЕТА

 

И

 

С

 

УЧЕТОМ

 

УСТАНОВКИ

 

КОМБИНИРОВАННОГО

 

УСТРОЙСТВА

 

УПРАВЛЕНИЯ

 

ПЕРЕТОКОМ

 

АКТИВНОЙ

 

МОЩНОСТИ

При  рассмотрении  ПП  использовалась  схема, 

представленная на рисунке 6. Было рассмотрено 

трехфазное КЗ на ВЛ 500 кВ в дефицитной части 

ЭС  (подсистема  1)  длительностью  0,3  секунды 

в  узле  7.  Установка  УУПМ  существенно  снижает 

влияние на избыточную часть ЭС (разница харак-

терных величин достигает 25%). В дефицитной ча-

сти ЭС УУПМ позволяет значительно снизить ам-

плитуду качаний роторов генераторов.

Анализ  графиков  ПП  без  и  с  УУПМ  показал, 

что его установка позволяет снизить влияние вза-

имных  качаний  генераторов  двух  подсистем  (ри-

сунок  9).  В  результате,  УУПМ  повышает  устойчи-

вость генераторов, демпфирует слабозатухающие 

колебания и уменьшает длительность ПП.

Дополнительный  интерес  представляет  работа 

ЭС  с  УУПМ  при  питании  части  нагрузки  непосред-

ственно  от  него  (после  ликвидации  КЗ).  В  этом  ре-

жиме  АСЭМПЧ  поддерживает  заданные  значения 

напряжения  на  своих  шинах 

U

,  и  передаваемой 

активной  мощности, 

P

уст

.  Напряжение  возбуждения 

формируется в виде:
 

E

de

1

 = 

E

de

01

 + 

k

0

1

 ∙ (

в

 – 

в жел1

) + 

k

0

1

 отк

 ∙ 

отк

,  (24)

 

E

de

2

 = 

E

de

02

 + 

k

0

P

 ∙ (

P

g

 – 

P

уст

) + 

k

0

2

 отк

 ∙ 

отк

,  (25)

где 

в

 = 

s

в

 + 1 и 

в жел1

 = (

1

 + 

2

)/2  — фактическая 

и желаемая скорость вращения вала; 

отк

 = 

1

 – 

2

 — 

разница частот двух подсистем; 

k

0

1

 отк

 и 

k

0

2

 отк

 — ко-

эффициенты  усиления  по  разнице  частот  в  разде-

ленных  частях  ЭС; 

0

1

k

0

2

  и 

k

0

P

 

—  коэффициенты 

усиления по отклонению частот в разделенных час-

тях  ЭС  и  по  отклонению  передаваемой  активной 

мощности; 

P

g

 — передаваемая активная мощность. 

Отключение  ВЛ  ведет  к  изменению  режима  ра-

боты УУПМ с поддержания заданной передаваемой 

мощности  на  поддержание  номинальной  частоты 

в прилегающей сети.

 

d



в1

E

de

1

 = 

E

de

01

 + 

k

0

1

(

в1

 – 

жел1

) + 

k

0

1

 отк

 ∙ 

отк

 + 

k

Д

1

 —, (26)

 

dt

 

d



в2

E

de

2

 = 

E

de

02

 + 

k

0

2

(

в2

 – 

жел2

) + 

k

0

2

 отк

 ∙ 

отк

 + 

k

Д

2

 —, (27)

 

dt

где 

k

Д

1

 и 

k

Д

2

 — коэффициенты усиления по произво-

дной  изменения  скорости  вращения  вала  АСЭМПЧ 

для подсистем 1 и 2.

При выводе в ремонт АТ после КЗ на ВЛ 6–7 пере-

дача электрической мощности УУПМ осуществляет-

ся только машинами АСМ (отключение в единичной 

ремонтной схеме). 

В  исходном  режиме  первая  АСМ,  подключенная 

к узлу 6, работает в двигательном режиме и потреб-

ляет активную мощность. Вторая АСМ работает в ге-

нераторном  режиме  и  выдает  активную  мощность 

в узле 5.

В результате ликвидации КЗ на ВЛ 6–7 нагрузка 

в узле 6 схемы не отключается и ее электроснабже-

ние  осуществляется  от  АСЭМПЧ.  При  этом  проис-

ходит  автоматический  реверс  АСМ:  1-я  переходит 

в генераторный режим, а 2-я — в двигательный (ри-

сунок 10).

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0,055

0,06

0

1

2

3

4

5

У

го

л

 ро

тора, 

о.е.

t

, сек

с АСЭМПЧ

без АСЭМПЧ

Рис

. 9. 

Угол

 

ротора

 

генератора

 

Г

2 (

а

и

 

Г

3 (

б

)

а)

б)

0,06

0,08

0,1

0,12

0,14

0,16

0

1

2

3

4

5

У

го

л

 ро

тора, 

о.е.

t

, сек

без АСЭМПЧ

с АСЭМПЧ

 2 (65) 2021







Page 8


background image

90

Реверс  АСМ  осуществляется  за  3  секунды,  при 

этом за 0,4 секунды возобновляется электроснабже-

ние потребителей со стороны 1-й машины, при этом 

частота в примыкающей сети поддерживается в до-

пустимых  пределах.  Таким  образом,  проведенные 

эксперименты показывают высокую эффективность 

УУПМ  в  задаче  качественного  улучшения  условий 

протекания ПП и позволяют сформировать алгоритм 

управления  АСЭМПЧ  в  случае  его  выделения  на 

сбалансированную ЭС.

ОПРЕДЕЛЕНИЕ

 

ИСТОЧНИКОВ

 

ИСКАЖЕНИЯ

 

СИНУСОИДАЛЬНОСТИ

 

И

 

СИММЕТРИИ

 

НАПРЯЖЕНИЯ

 

С

 

ПОМОЩЬЮ

 

АСЭМПЧ

Поскольку мощность АСМ АСЭМПЧ достаточно вели-

ка, УУПМ способно длительное время питать крупных 

потребителей  участка  ЭС,  выделенного  на  изолиро-

ванную  работу,  не  только  после  ликвидации  КЗ,  как 

было показано ранее, но и в нормальных режимах ра-

боты. Это открывает дополнительную возможность по 

выявлению источников искажений синусоидальности 

и  симметрии  напряжения  в  ЭС.  Пусть  потребители 

АТ УУПМ выделены на односторонне питание от 1-й 

АСМ. (АТ отключен со стороны СН). Тогда, на частоте 

рассматриваемого искажения (гармоники или после-

довательности),  изолированный 

район  описывается  эквивалент-

ной  схемой  Тевенина  на  рисун-

ке 11. В этой схеме потребитель, 

работа  которого  не  ухудшает  ка-

чества  электрической  энергии 

(КЭЭ),  представлен  пассивной 

ветвью  с  некоторым  эквивалент-

ным  сопротивлением.  Напротив, 

если потребитель является нели-

нейным или несимметричным, то 

его  ветвь  на  частоте  рассматри-

ваемого искажения активная и со-

держит эквивалентную ЭДС. 

Особенность данной схемы — 

электрическая  близость  шины 

НН АТ и узлов 5 и 6, так как:
 

11

2

 

— ∙ 

Z

̇ ‘

АТ

 Z

̇

АТ 

k

АТ ВН–НН

 ∙ 

Z

̇ ‘

АТ

 

500

2

 

Z

̇ ‘

АТ

— = — = — = 4,84 ∙ 10

-4

 —, (28)

 

Z

̇ 

эк

 

Z

̇ 

эк

 

Z

̇ 

эк

 

Z

̇ 

эк

где 

Z

АТ

 — сопротивление АТ, приведенное к сторо-

не ВН; 

k

АТ ВН-НН

 — коэффициент трансформации АТ 

между сторонами ВН и НН; 

Z

эк

 — эквивалентное со-

противление нагрузки АТ. 

Направление протекания токов искажений в ак-

тивных ветвях схемы условны и определяются сло-

жившимся режимом работы. До выделения участка 

сети на изолированную работу (питание от узлов 5 

и 6 схемы) значение тока рассматриваемого иска-

жения в каждой 

j

-й ветви схемы и его направление 

определяется соотношением величин эквивалент-

ного  ЭДС  ветви  и  напряжения  на  стороне  НН  АТ, 

через  коэффициент  пропорциональности  —  экви-

валентное сопротивление ветви:
 

I

̇

j

 = (

U

̇

НН

 – 

E

̇

j

) / 

Z

̇

j

(29)

В зависимости от сложившегося режима работы 

направление  тока  в  активных  ветвях  может  быть 

различным: от шин НН (условно положительное на-

правление),  когда  искажающий  потребитель  не  яв-

ляется  доминирующим;  или  к  шинам  НН  (условно 

отрицательное направление), когда искажающий по-

требитель является доминирующим. При этом в пас-

сивных ветвях схемы направление токов от шин НН 

неизменно (

E

1

 и 

E

2

 равны нулю).

При выделении участка сети на изолированную 

работу  (питание  только  от  узла  6)  справедливо 

утверж дение о симметрии и синусоидальности на-

пряжения  в  узле  6,  что  обеспечивается  1-й  АСМ. 

В  этих  условиях  с  учетом  (28)  справедливо  до-

пустить, что напряжение на стороне НН АТ также 

всегда  практически  симметрично  и  синусоидаль-

но. В таком случае на частотах рассматриваемых 

искажений напряжение по стороне НН АТ стремит-

ся к нулю (но не достигает его), а выражение (29) 

принимает вид:
 

I

̇

j

 

≈ – 

E

̇

j

 / 

Z

̇

j

,  

(30)

где знак минуса в числителе говорит, что при выде-

лении участка сети на изолированную работу ток на 

частоте  искажения  в  активной  ветви  потребителя 

всегда направлен к шинам НН.

КАЧЕСТВО 

ЭЛЕКТРОЭНЕРГИИ

-0,07

-0,05

-0,03

-0,01

0,01

0,03

0,05

0,07

0

1

2

3

4

5

Электрическая мощность, о.е.

t

, сек

Г7

Г6

1

2

3

4

Рис

. 10. 

Электрическая

 

мощность

 

Г

и

 

Г

7

Рис

. 11. 

Эквивалентная

 

схема

 

Тевенина

 

изолированного

 

района

 

на

 

частоте

 

рассматриваемого

 

искажения

Z

АТ

 — 

эквивалентное

 

сопротивление

 

АТ

приведенное

 

к

 

сто

роне

 

НН

Z

j

 — 

сопротивление

 

ветви

 

j

го

 

потребителя

E

j

 — 

ЭДС