ThermoSensor. Monitoring of the State of the Electrical Equipment Сontact System in 0.4-20 kV Networks

Page 1
background image


Page 2
background image


diagnosis and monitoring



Monitoring of 

the State of the Electrical Equipment 
Сontact System in 0.4-20 kV Networks

Trends of modern power engineering are focused on digital network development. 

One of the tasks of PJSC ROSSETI Concept of Networks Digitalization for 2018-2030 

is the implementation of electrical network equipment capable to continuous condi-

tion monitoring and defects identi



ThermoSensor remote control 

system is designed for contact sys-
tem of 6-10 kV Package Outdoor 
Switchgear (POS) cubicles, equip-
ment  of  6-20  kV  Packaged  Trans-
former Substations (PTS) and 0.4 kV 
switchgears.  The  system  is  fully 
compatible with PJSC ROSSETI
target technological model of digital 
network and provides with possibil-
ity to determine local emergency 
overheating of electrical equipment 
in continuous mode with subse-
quent automatic signal sending to 
the dispatcher console.

ThermoSensor system (Figure 1) 

consists of gas-generating stickers, 
a gas sensor and checking and re-
ceiving device (CRD). Stickers are 
placed on the contact connections 
(CC). When heated, the stickers 
change the color and generate sig-
nal gas, which is captured by the 
sensor. The overheating signal is 
transmitted via CAN bus or Modbus 
RTU (RS485) to the CRD, then to 
the workstation (WKS), central con-
trol room (CCR), digital communica-
tion center (DCC) and 


 re alarm sys-

tem. In addition, the sensor beeps. 
Also, automatic disconnection of 
protected object is possible.

ThermoSensor system provides 



 nding before an emergency 

shutdown and 


 re occur. Figure 2 

shows CC heating chronology. 
Segment no. 1 on the life cycle line 
of electrical equipment demon-
strates time period when CC emer-
gency heating occurs (for example, 
as a result of short-circuit currents). 
On this segment, planned infrared 
control can detect CC heating only 


 owing currents are close 

to the maximum. After some time, 
the defect grows. Line no. 2 shows 
stable CC heating, which is eas-
ily detected by thermal imagers or 
pyrometers regardless of the load. 
On this segment, signi


 cant  deg-

radation processes take place in 
CC (those processes characterize 
CC reliability). During any subse-
quent network disturbance, as well 
as long-term day-to-day opera-
tion, this CC can be damaged and 
go to the third phase (line no. 3 in 
Figure 2). When emergency tem-
peratures are reached, the CC is 
destroyed regardless of the load. 
When this happens emergency 
shutdown occurs and leads to 



in some cases.

ThermoSensor system auto-



 xes single local CC over-

heating up to 80-120º


, and trans-

mits a fault signal long before an 
emergency or 


 re occur.

ThermoSensor system advan-

tages  in  comparison  with  classic 

Figure 1. ThermoSensor innovative system for monitoring of electrical equipment overheating: a) gas-generating 

stickers with heat-indicating scale; b) specialized gas sensor; c) checking and receiving device




ThermoElectrika, LLC

Russian Federation,

Moscow, Skolkovo

Innovation Center,

Bolshoy boulevard, 42, 

bld. 1, room no. 754,

Tel.: +7 (495) 231-92-99,



Ph.D., Strategic 
Development Director of 
ThermoElectrika, LLC

Aleksey LESIV, 

Business Development 
Director of Thermo-
Electrika, LLC

Page 3
background image


diagnostics of distribution network 
electrical equipment are:
•  costs saving for expensive ther-

mal imaging;

•  inspection personnel drawdown;
•  continuous electrical equipment 

monitoring without inspection in-
terruptions (including monitoring 
during peak loads). It should be 
pointed that CC resistance mea-
surement or CC heating control 
with pyrometers give a possibi-
lity to assess technical state at 
given time under given condi-
tions. With that, 


 rm  prediction 

of obsolete electrical equipment 
reliability is a systemic scienti



and technical problem;

•  ability to control nodes which are 

not suitable for thermal imaging;

•  absence of necessity to discon-

nect electrical equipment for in-
spection purposes. As a result, 
there is no need for additional 
switching and special modes in 
electrical network. It increases di-
agnosis accuracy and ef



• ef


 ciency upgrade and auto-

matic transmission of data on 
detected defect to the customer 
or operational personnel and 
hence cutting time for remedial 
work organization;

•  improvement of diagnosing ef-


 ciency for electrical equipment 

with excess operational life-
time and reducing operational 
costs for maintenance. The 
frequency of technical diagnos-
tics approved by standards and 
technical documentation has 
to provide relative reliability of 
defects detection in electrical 

equipment within its rated life-
time. Defects in worn-out elec-
trical equipment grow much 
faster in comparison with equip-
ment working for rated lifetime. 
Due  to  this  fact  it  can  be  ne-
cessary to shorten the time be-
tween scheduled diagnostics of 
obsolete electrical equipment, 
to  reduce  overhaul  period  and, 
as a result, to increase operat-
ing costs;

•  ThermoSensor system provides 

observability of electrical net-
work, and is a self-diagnosis sys-
tem element for determination 
of contact system conditions. 
The development of data trans-
fer system from ThermoSensor 
CRD to utility’s network manage-
ment system gives a possibility 
to provide intellectual adapta-
tion of network operation modes 
depending on network technical 
conditions (as an example of 
such adaptation is interdiction to 
connect load to cubicles where 
emergency overheating is de-

•  integration of the ThermoSensor 

system in post-accident monitor-
ing system (PAMS) improves ac-
curacy of real technical condition 
index calculation. The improve-
ment of the system for collecting 
and analyzing ThermoSensor 
operation results gives a chance 

to evaluate repair work ef



cy. Among the estimated factors 
are materials and technologies 
used, the quality of repair crews 
operation, and distribution net-
work elements deterioration.
Thus, the ThermoSensor sys-

tem provides effective control of 
equipment reliability taking into ac-
count the revealed shortcomings 
of the classical diagnostic system. 
The technical result of the Thermo-
Sensor system implementation is 
a reduction of emergencies in elec-
trical networks and an increase of 
operation ef



Experimental operation of the 

ThermoSensor system and its im-
plementation as a pilot project are 
already conducted at a number of 
major Russian enterprises. Ther-
moSensor system ef


 ciency  was 

proved by full-scale tests carried out 
at the facilities of PJSC "MOESK", 
LLC "ABB" (tests in 6-25 kV switch-
gear cubicles) and JSC "UNECO" 
(tests in RM6 cubicles).

ThermoSensor system produc-

tion is located in the Russian Fede-
ration. It is protected by patents 
and has the necessary certi



tion, including certi


 cate of FGBU 

VNIIPO of EMERCOM of Russia. 
The ThermoSensor system is the 
cheapest technology in the world, 
characterized by simple installation 
and maintenance. 



Figure 2. Heating chronology of contact connection (CC)

CC temperature, °



Life cycle

Existing solutions:

The line of CC thermal 

defect development during 

the life cycle

Thermal indicators

Smoke indicators
Aspirating systems
Gas detectors

ThermoSensor system is a Russian 
innovative solution for gas analytical 
control of CC heating of distribution 

network electrical equipment. The system has competitive advantages in 
comparison with technologies for CC overheating detection and has no ana-
logues in the world.

47th CIGRE Session 

Special issue, August 2018

Читать онлайн

Trends of modern power engineering are focused on digital network development. One of the tasks of PJSC ROSSETI Concept of Networks Digitalization for 2018-2030 is the implementation of electrical network equipment capable to continuous condition monitoring and defects identification.


«ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение»