Effi ciency of Implementing Domestic Innovative High-strength and Hightemperature Steel-aluminum Сonductors

Page 1
background image

The MAIN JOURNAL for POWER GRID SPECIALISTS in RUSSIA

3 - 6   J U N E   2 0 1 9

MADRID, SPAIN

The MAIN JOURNAL for POWER GRID SPECIALISTS in RUSSIA

3 - 6   J U N E   2 0 1 9

MADRID, SPAIN


Page 2
background image

24

Effi

  ciency of Implementing 

Domestic Innovative High-
strength and High-temperature 
Steel-aluminum Сonductors

PJSC "Rosseti" maintains 44 thousand km of new conductor types 
or 1% of the total conductors' length (4.5 million km). Among these 
conductors are self-supporting insulated wires of various modi

 ca-

tions (more than 41 thousand km or 0.9% of the total conductors' 
length) and bare conductors (less than 3 thousand km or less than 
0.1% of the total conductors' length). In addition, Russian modern 
power grid is characterized by physical deterioration and obsoles-
cence of equipment. As a result, low energy ef

 ciency of power fa-

cilities takes place. The most important indicator of power system 
ef

 ciency is the level of energy losses. With the growing power 

losses in electrical networks, the number of urgent problems 
increases. Reconstruction and technical re-equipment of electri-
cal networks, application of advanced technical developments in 
design solutions, implementation of modern technologies and ma-
terials increasing reliability, durability and maintainability of power 
transmission lines are among these problems.

Fokin V.A.,

Director General of 

"Energoservis", LLC

Timashova L.V.,

Ph.D., Principal researcher of 

the Department for Supporting 

Scientifi c and Technical Council 

and Scientifi c and Technical 

Information, "R&D Center "FGC 

UES", JSC

Merzlyakov A.S.,

Head of the Center for 

Composite Materials and 

Superconductivity, "R&D Center 

"FGC UES", JSC

Gurevich L.M.,

D.Sc., Head of the Department 

of Materials Science and 

Composite Materials, VSTU

Kuryanov V.N.,

Ph.D., Head of Power and 

Electrical Engineering 

Department, National Research 

University "Moscow Power 

Engineering Institute"

Nazarov I.A.,

Head of the Substation 

Department of the Center 

for Reliability and Asset 

Management, "R&D Center

"FGC UES", JSC

INTRODUCTION

As of today, fi nding the ways for improving pow-

er grid energy effi  ciency is a pressing issue. One 

of the ways is the use of innovative conductors 

with  better  characteristics  than  steel-aluminum 

conductors.  Increased  transmission  capacity, 

mechanical  strength,  resistance  to  high  tem-

peratures and resistance to aging and aggres-

sive ambience are among these characteristics.

Power  losses  optimization  in  electrical  net-

works  requires  accelerated  implementation  of 

the following activities:

 

– upgrading power grid equipment and imple-

mentation  of  new  energy-saving  technolo-

gies;

 

– conducting  research,  design  and  develop-

ment works related to calculations, analysis, 

rationing  and  reduction  of  power  losses  in 

electrical networks.

The  paper  systematizes  studies  carried  out 

in  the  framework  of  the  project  for  developing 

high-temperature  and  high-strength  conductors 

according to the relevant Agreement with PJSC 

"Rosseti". The  task  of  the  studies  was  to  con-

fi rm the possibility of solving the basic problems 

of  overhead  lines  construction  and  operation 

through  the  joint  use  of  ASHT/ASHS  conduc-

tors together with overhead ground wires, when 

keeping  cost  at  a  level  of  steel-aluminum  con-

ductors.  The  results  are  shown  in  table  1  and 

described in this paper.

o

v

e

r

h

e

a

d

 t

r

a

n

s

m

is

s

io

n

 l

in

e

s

overhead transmission lines


Page 3
background image

25

RESEARCH OF CORONA DISCHARGE OCCURRENCE AS A FUNCTION OF VOLTAGE

An important point when using conductors with less di-

ameter is the risk of corona losses and noise level en-

hancement.  "R&D  Center  "FGC  UES",  JSC 

and  then  VDE  (Verband  der  Elektrotechnik, 

Elektronik  und  Informationstechnik)  con-

ducted  four  studies  for  testing  this  problem. 

At the fi rst stage, two conductors of the same 

diameter (18.8 mm) were taken for comparing 

and studying corona discharge. In total, four 

conductors were used within the experiment 

(Table  2).  The  tests  were  carried  out  in  ac-

cordance with IEC 61284 recommendations.

Based  on  comparative  tests  results  ob-

tained at "FGC UES" R&D Center, it was es-

tablished that ASHS 197/55 conductor manu-

factured by "Energoservis", LLC has corona 

discharge voltage (142.2 kV) by 5.7% higher 

than ACSR 185/29 conductor (134.5 kV) with 

the same diameter (18.8 mm).

Similar  tests  were  carried 

out for ASHS 216/33 and ACSR 

240/32 conductors with diff erent 

diameters.  Based  on  compara-

tive  tests  results  ACSR  240/32 

conductor (21.6 mm in dia meter) 

and  ASHS  216/33  conductor 

(18.5  mm  in  diameter)  have 

the  same  corona  discharge 

voltage.  However,  continuous 

permissible  current  of  the  con-

ductors being compared diff ers signifi cantly (510 A for 

ACSR 240/32 conductor, 689 A for ASHS 216/33 con-

ACSR150/19

ACSR185/29

ASHS197/55

ACSR240/32

Table 1. Possibilities of solving the main problems of overhead lines

construction and operation through the joint use of ASHS / ASHT conductors

Problem

Solution

based on ACSR 

application

Solution based 

on ASHS / ASHT 

application

Confi rmation

Reducing corona losses and noise level, without 

increasing conductor’s diameter

+

Experimental confi rmation of 

"R&D Center "FGC UES", JSC 

and VDE (Germany)

Increasing lightning protection and resistance to short-

circuit currents

+

Experimental confi rmation of 

"R&D Center "FGC UES", JSC 

and VDE (Germany)

Signifi cant reduction of elongation in operation

+

Experimental confi rmation of 

"R&D Center "FGC UES", JSC

Reducing vibration, galloping and oscillations self-

damping, while keeping conductor diameter 

+

Experimental and computa-

tional confi rmation of VSTU, 

JSC "VNIIZHT" and MPEI

Increasing span length and (or) sags, without increas-

ing conductor’s diameter

+

Design solutions

Replacing the conductor on the existing transmission 

poles, decreasing the load on all elements of overhead 

line and (or) increasing its transmission capacity

+

Design solutions

Decreasing wind pressure while keeping conductor 

diameter

+

Computational confi rmation of 

VSTU and MPEI

Replacing the conductor in the ring networks and 

decreasing conductor diameter

+

Design solutions

 Reduction of icing, while keeping conductor diameter

+

Computational confi rmation of 

VSTU and MPEI

Keeping transmission capacity in areas with high air 

temperatures and solar activity, without increasing 

conductor’s diameter

+

Design solutions and compu-

tational confi rmation of VSTU 

and MPEI

Table 2. Technical data of the tested conductors

Conductor model

Conductor 

diameter (ex-

ternal), mm

Number of alumi-

num wires in the 

conductor, pcs

Diameter of 

outer layer 

wires, mm

Continuous 

permissible 

current

ACSR 150/19

16.8

24

2.8

450

ACSR 185/29

18.8

26

2.98

510

ASHS/ASHT 197/55

18.8

28

3.45

561/943*

ACSR 240/32

21.6

24

3.6

605

* t

max

= 70 °C for high-strength steel-aluminum conductors and t

max 

= 150 °C for high temperature 

steel-aluminum conductors.

Fig. 1. Dependence of corona discharge points number on voltage

Corona discharge points number

, pcs

Voltage, kV

100

160

180

120

140

30

25

20

15

10

5

0

The 25th CIRED Session 
Special issue, June 2019


Page 4
background image

26

ductor (t = 70 °C), and 1040 A for ASHT 216/33 

conductor (t = 150 °C)).

The test voltage for inspecting visible corona 

on  220  kV  overhead  lines  was  determined  by 

FGH  Engineering  &  Test  GmbH  laboratory  as 

167.7  kV  (phase  voltage).  The  test  voltage  of 

"R&D  Center  "FGC  UES",  JSC  laboratory  was 

160.0 kV (phase voltage).

The  test  procedure  in  both  laboratories  was 

identical.  Voltage  levels  and  registered  results 

when testing visible corona are shown in Table 3.

The  tests  of  new ASHT  216/33-1  high-tem-

perature  conductor  for  visible  corona  inception 

were carried out in "FGC UES" R&D Center na-

tional testing laboratory and FGH Engineering & 

Test GmbH German testing laboratory. The tests 

were  performed  according  to  IEC  61284:1998 

method and produced similar results for corona 

ignition voltage and streamer inception of coro-

na discharge.

The  diff erences  in  the  results  occur  due  to 

the conditions of conductor samples when test-

ing. Conductor samples were taken directly from 

the drum when testing in FGH Engineering & Test 

GmbH laboratory. As to the tests of "FGC UES" 

R&D  Center  laboratory,  the  surface  of  conduc-

tor samples was additionally cleaned of dirt and 

small  defects  (related  to  the  transportation  and 

unwinding)  that  could  cause  corona  discharge. 

It was done for studying immunity of new ASHT 

19.6-216/33-1 conductors to corona discharge inception.

According to the tests results obtained by the labora-

tories, it was determined that streamer inception of co-

rona discharge for ASHT 19.6-216/33-1 conductor is at 

the level of 139.7–150 kV (phase voltage). Based on co-

rona discharge level, this conductor is recommended for 

use in domestic and foreign 110, 115, 138 and 150 kV 

electrical networks (in some cases the conductor can be 

used up to 220 kV).

The calculated specifi c corona losses in good weath-

er are presented in Tables 4, 5. Table 6 gives the aver-

age  characteristics  of  overhead  transmission  lines  in 

Russia.

ASHS  conductors  have  advantages  in  terms  of 

smaller  corona  losses  in  comparison  with ACSR  con-

ductors of the same diameter. Also, ASHS conductors 

have comparable corona losses in regard to ACSR con-

ductors  with  larger  diameter  and  similar  electrical  and 

mechanical characteristics.

STUDY OF WIND PRESSURE

The  direct  infl uence  of  wind  on  overhead  lines  opera-

tion is its pressure on the conductors, ground wires and 

poles.  In  addition,  wind  increases  conductors'  tension 

through creating a transverse load. Additional bending 

forces on power line poles also appear. Wind pressure 

can cause breakage and fall of the poles with the pull out 

of bad fi xed foundations. The results given below proves 

the necessity of replacing ACSR conductors with ASHS/

ASHT ones on obsolete overhead lines.

Table 3. Results of visible corona discharge registration

for ASHT-216 / 33-1 conductor 

FGH Engineering & Test GmbH "R&D Center "FGC UES", JSC

Test

voltage, kV

Presence of 

visible corona 

discharge

Test

voltage, kV

Presence of 

visible corona 

discharge

41.9

Absence of 

visible corona 

discharge

100.0

Absence of 

visible corona 

discharge

55.9

105.0

70.0

110.0

83.8

115.0

97.8

Corona ignition 

voltage

120.0

111.8

125.0

125.7

130.0

Scant glow of 

isolated corona 

discharge points

139.7

Streamer incep-

tion of corona 

discharge

135.0

153.7

140.0

Stable ignition of 

corona discharge

167.7

Increment — 10% of rated test 

voltage 167.7 kV (phase voltage)

150.0

Streamer

inception

of corona

discharge

155.0
160.0
165.0

Increment — 5 kV of rated test 

voltage 167.7 kV (phase voltage)

Table 4. Calculated specifi c corona losses in good weather 

(220 kV overhead line)

Phase construction (conductor 

model; conductor diameter)

Annual average 

losses change

ACSR 240/32, Ø 21.6 mm

+ 26.67%

ACSR 300/39, Ø 24.0 mm

0.00%

ACSR 330/43, Ø 25.2 mm

–13.33%

ASHS 317/47, 

Ø 22.3 mm

–13.33%

ASHS 295/44, 

Ø 21.5 mm

–6.67%

Table 5. Calculated specifi c corona losses in good weather 

(330 kV overhead line with split phase

consisting of 2 conductors with 40 cm spacing)

Phase construction (conductor 

model; conductor diameter)

Annual average 

losses change

2 × ACSR 300/39, Ø 24.0 mm

+ 18.52%

2 × ACSR 400/51, Ø 27.5 mm

0.00%

2 × ASHS 317/47, 

Ø 22.3 mm

–7.41%

2 × ASHS 295/44, 

Ø 21.5 mm

+ 3.70%

Table 6. Average characteristics of overhead lines in Russia

Voltage. kV

220

330

500

750

Average length of over-

head line. km

59

88

187

250

Average diameter of 

ACSR conductor. mm

25.6

25.6

27.4

26.1

Possible ASHT / ASHS 

conductor diameter in 

terms of corona discharge

22.4

22.4

24.5

24

OVERHEAD

TRA

N

SM

I

SS

I

O

N

 L

IN

ES


Page 5
background image

27

COMSOL  Multiphysics  software  package  was  used 

for simulating airfl ow behavior near the conductors. The 

software  allowed  engineers  to  solve  partial  diff erential 

equations. Navier-Stokes equation was the model basis:

(

·

 

)

 u 

=

   

·

   

Pl

 + (

 + 

T

)(

u

 + (

u

)

T

) –

 

2

 

– — (

 + 

T

) (

·  ) 

l

 – — 

kl 

 + 

F

 

3

 

·

 

(



u

)

 

= 0,

(

·

 

)

 k 

=

   

·

   

(

 + 

k

*

) (

k

)

 

 + 

P

– 

0

k

 

,  (1)

(

·

 

)

 

 

=

   

·

   

(

 + 

*



) (

k

)

 

 + 

(

/

k

)

P

– 

0

2

,

 k

 

/

,

 

2

P

k

 

=

 

·

    u

: (

u

 + (

u

)

T

) –

 

 

(

·

 u

)

2

 

 

– —

 

k

 

·

 

u

,

 

3

where 

u

 is the air velocity;   is the del operator; 

 is the 

air density; 

 is the dynamic viscosity; 

k

 is the turbulent 

kinetic  energy; 

  is  the  specifi c  dispersion  rate; 

a

*

k

*

0

0

  are the coeffi  cients of turbulent fl ow, 

l

 is the 

turbulence intensity. 

The two-dimensional model was used to assess the 

wind impact on conductors with diff erent cross-sectional 

shapes. The model’s geometry is shown in Figure 2.

The following boundary conditions were chosen:

 

– wind speed direction is perpendicular to AB:
 

AB

 = 

0

 ; 

(2)

 

– pressure equals zero on BC, CD and AD faces:
 

p

 = 0 ; 

(3)

 

– the boundaries of conductor’s cross section are non-

deformable walls.

The simulation was carried out at diff erent values of 

AB

  speed,  which  are  typical  for  I,  III  and  special  wind 

zones according to 7th edition of Electrical Installations 

Code [1].

The wind load acting on the 

conductor  across  the  center 

was  calculated  as  the  sum  of 

pressure X-components:
 

F

 = 

n

 · 

P dl

(4)

where 

P

 is pressure, 

n

 is the unit 

vector along the 

X

-axis.

The interactions of wind and 

conductors  depending  on  wind 

speed  and  type  of  conductors' 

cross-section  have  been  com-

pared. The following conductors 

with similar diameters have been 

used  for  comparison:  ASHS 

128/37 and ACSR 120/19; ASHS 

230/32 and ACSR 240/34; ASHS 

277/79  and  ACSR  240/56  (the 

cross-section  area  of  aluminum 

and  steel  in  mm

2

  represent  in 

the  numerator  and  denomina-

tor respectively). The calculated 

wind  load  diff ers  from 

P

H

W

,  stan-

dard  wind  load  on  conductors 

and  ground  wires,  determined 

according to 7th edition of Elec-

trical Installations Code. The diff erence takes place due 

to ignoring the following facts: wind pressure change at 

various  heights  depending  on  terrain,  the  infl uence  of 

span length on the wind load, wind pressure nonunifor-

mity along overhead line span. The used approach allows 

engineers to determine clearly the contribution of conduc-

tor’s contour to the change of wind load.

The  view  of  conductors'  contour  after  crimping  was 

obtained  by  modeling  steel-aluminum  conductor  plastic 

deformation  process  in  the  Abaqus/Explicit  module  of 

the SIMULIA/Abaqus software (Abaqus, Inc., USA). For 

all ASHS conductors aluminum wires of outer layer are 

tightly  adjacent  to  each  other  without  gaps.  It  provides 

a possibility to simulate the wind impact on a single con-

ductor with one external contour by means of COMSOL 

Multiphysics.

The  wind  pressure  acting  on  the  conductors  and 

air velocity distribution after fl owing around ACSR con-

ductors  (according  to  GOST  839)  and ASHS  conduc-

tors (according to STO 71915393 – TU 120-2012) with 

230 mm

2

 aluminum cross section are shown in Figures 

3 and 4. A smoother contour and the smaller diameter 

of ASHS conductors provide the reduction of pressure 

zone in front of the conductor (Figure 3b) and the stag-

nant  zone  behind 

it  (Figure  4b).  The 

maximum  pressure 

on  ASHS  conduc-

tors is less by 3.5%, 

while  the  area  with 

increased  pressure 

is smaller regarding 

to  ACSR  conduc-

tors.  The  formation 

of  several  local  ar-

eas  characterized 

by  air  deceleration 

Fig. 2. Geometry of the used model: 
1 – conductor cross-section,
2 – air

 ow

Fig. 4. Speeds distribution in the air

 ow at the wind speed of 25 m/s (the 

 rst wind 

zone): a) ACSR 120/19; b) ASHS 128/37

а)

а)

b)

b)

Fig. 3. Wind pressure acting on the conductors at the wind speed of 60 m/s (the 

 rst wind 

zone): a) ACSR 400/64; b) ASHS 477/66

Wind pressure, kPa

Air speed, m/s

mm

mm

mm

mm

mm

mm

mm

mm

The 25th CIRED Session 
Special issue, June 2019


Page 6
background image

28

and reduced pressure is much more visible on the pro-

truding turns of ACSR aluminum wires facing airfl ow front.

As  can  be  seen  from  the  data  above,  wind  load  on 

ASHS conductors having streamlined design is lower by 

33%  on  the  average.  Reduction  of  wind  load  makes  it 

possible to reduce the load on power transmission poles 

and  to  mount  conductors  with  greater  transmission  ca-

pacity on existing poles during capital repairs. Also, the 

possibility to reduce the load on all elements of overhead 

line when keeping its transmission capacity appears.

REDUCTION OF VIBRATION LOADS

AND OPERATING TENSION

Plastically crimped conductors have a number of advan-

tages, which are usually typical for expensive conduc-

tors  from  profi led  wires. Among  these  advantages  are 

vibration loads reducing and oscillations self-damping.

Intensive  gust-and-glaze  loading  of  6-750  kV  over-

head  power  lines  is  one  of  the  urgent  power  industry 

problems in the countries with relevant weather condi-

tions.  Plastically  deformed ASHS  conductors  have  al-

most  smooth  outer  surface  (close  to  conductors  from 

segmented 

- and Z-shaped aluminum wires). Due to 

this,  conductors  vibration  and  galloping  as  well  as  ice 

coating can be reduced. At the same time, ASHS con-

ductors  should  have  greater  torsional  rigidity,  reduced 

galloping  probability,  increased  resistance  to  vibration, 

and self-damping ability even in comparison with con-

ductors  from  segmented 

-  and  Z-shaped  aluminum 

wires, because ASHS conductors have developed con-

tact surface of adjacent wires not only inside one layer, 

but also between layers [2].

Plastic deformation of conductors not only increases 

the  mechanical  strength  signifi cantly,  but  also  several 

times  reduces  elongation  during  operation  (regardless 

of  the  metal).  The  corresponding  tests  with  products 

from diff erent metals (from steel to copper) were carried 

out in JSC "VNIIZHT" and "R&D Center "FGC UES", 

JSC. Complete study is presented in [3].

INCREASE OF SPAN LENGTH WHEN 

CONSTRUCTING NEW FACILITIES

The plastically crimped ASHS and ASHT conductors 

allow  engineers  to  increase  the  distance  between 

overhead line poles up to 40% of the standard span 

(in the absence of restrictions related to line route). 

It is an urgent task when constructing new overhead 

lines. For example, the comparative analysis of the 

span length for ASHS 128/37 conductor mounted on 

110  kV  overhead  line  and ACSR  120/27,  TACSR  120, 

ACSR  120/19  conductors  with  the  same  cross-section 

and  dia meters  has  been  fulfi lled.  Because  of  ASHS 

128/37 conductors application the span length can be in-

creased from 212 to 294 m compared with ACSR 120/27 

conductor. ASHS 128/37 conductor has a higher content 

of steel (the ratio between aluminum and steel cross-sec-

tion area is 3.45 for ASHS 128/37 conductor and 4.3 for 

ACSR 120/27 conductor), an equal diameter (15.2 mm), 

and increased transmission capacity (by 8% higher).

An  example  of ASHS/ASHT  conductors  application 

effi  ciency is the initial project of 150 kV Murmanskaya 

overhead line (Table 8 and Figure 5). ASHS 258/73 con-

ductor  is  the  most  eff ective  option  when  constructing 

new overhead line. In its turn, ASHS 216/33 conductor 

is the optimal option when reconstructing overhead line 

(replacing  conductors  on  existing  power  transmission 

poles). 220 kV overhead line project developed by "FGC 

UES" R&D Center is also an illustrative example.

Proper use of developed conductors in combination 

with ground wires (TU 062-2008) or fi ber-optic ground 

wires  (TU  113-2013)  for  new  construction  and  recon-

struction of 35-750 kV overhead lines can signifi cantly 

increase their transmission capacity, reduce capital and 

operating costs and enhance reliability when exposing 

entire range of climatic loads.

SUPPORTING TRANSMISSION CAPACITY 

IN THE REGIONS WITH HIGH AMBIENT 

TEMPERATURE WHEN KEEPING THE COST

Due to its design features, ASHT high-temperature con-

ductor is cheaper by several times regarding to import-

ed analogs with a long-term permissible temperature of 

150 °C. Characteristics and features of ASHT conductor 

are confi rmed by the Russian-German tests.

According to existing Electrical Installations Code, 

permissible current is determined taking into account 

the  highest  conductor’s 

temperature (70 °C).

The calculation of the 

limit currents at the tem-

pe ra tures  below  45  °C 

can  be  produced  ignor-

ing the infl uence of solar 

radiation. Absorbed solar 

radiation  in  the  middle 

latitudes  can  heat  con-

ductors  by  2-3  °C  (for 

conductors  operating  in 

the temperature range of 

60-70 °C and above).

Table 7. Wind load for conductors with

diff erent cross-section contour depending on airfl ow speed

Airfl ow 

speed

v

AB

 , m/s

Wind load acting on conductors, N / m

ASHS 

128/37

ACSR 

120/19

ASHS 

216/32

ACSR 

240/34

ASHS 

277/79

ACSR 

240/56

25

3.6

4.8

4.9

6.9

5.2

7.0

32

5.9

7.9

7.8

11.4

8.4

11.5

60

20.8

28.5

28.4

41.5

29.8

41.6

Table 8. Indicators of ASHS/ASHT application

on 150 kV Murmanskaya overhead transmission line

Conductor

Breaking 

load, kN

Maximum

tension, daN

Conductor

diameter, mm

Weight of con-

ductor (1 km), kg

Span

length, m

ACSR 240/32

75.05

3377.33

21.6

921

330

ASHS 258/73

151.533

6819.13

21.6

1296.5

443

ASHS 295/44

109

4905.05

21.5

1183

382

ASHS 218/63

130.096

5854.44

19.82

1106.7

424

ASHS 216/33

81.5

3667.51

18.5

855

352

ASHS 214/61

126.672

5700.33

19.6

1080.9

421

ВОЗДУШНЫЕ 

ЛИНИИ

OVERHEAD

TRA

N

SM

I

SS

I

O

N

 L

IN

ES


Page 7
background image

29

ASHT conductor is cap -

able  to  withstand  a  greater 

load  under  equal  environ-

mental conditions in compar-

ison  with  ACSR  conductor. 

The  diff erence  in  permis-

sible load for the compared 

conductors is 5%. The tem-

perature of ASHT conductor 

is lower comparing to ACSR 

conductor, when increasing 

current  load.  The  tempera-

ture diff erence is especially 

noticeable  at  high  currents 

(around 5-7%). 

It  should  be  noted  that, 

according  to  the  regulatory 

documentation, standard conductors are allowed to oper-

ate when their temperature is up to 90 °C. The permis-

sible temperature for ASHT conductors is 150 °C.

Figure  6  represents  the  dependence  of  permis-

sible current load on the air temperature (wind speed is 

1.2 m/s) for ACSR and ASHT conductors in conditions of 

the maximum operating temperature of 80 °C and 150 °C, 

respectively. Continuous permissible current for high-tem-

perature conductor is 30-35% higher than the value for 

standard conductor of the same diameter. Thus, innova-

tive conductor can be used when signifi cant enhance of 

transmission  capacity  without  increasing  the  cross-sec-

tion, is required. Also the innovative conductor can be im-

plemented in the areas with high ambient temperatures.

CONCLUSIONS

1.  Conducted studies have shown the following:

 

– ASHT conductors' application in electrical grid is the 

eff ective solution (the data on the ultimate loads, the 

reduction  of  heat  release  and  magnetization  of  the 

conductors in operation have been obtained);

 

– ASHS  conductors  have  corona  discharge  voltage 

higher, than ACSR conductors with the same diameter;

 

– the relative decrease of ASHT conductor magnetiza-

tion in comparison with ACSR conductor is 3-10%. 

2.  The  obtained  results  show  that  innovative  ASHT 

conductors'  application  is  justifi ed  when  signifi cant 

increase  of  transmission  capacity  without  increas-

ing the cross-section is required. Also, the innovative 

conductor can be used in the areas with high ambient 

temperatures.

3.  Based  on  multivariate  comparative  analysis,  the 

comparable cost of ACSR and ASHT/ASHS conduc-

tors does not increase costs of overhead lines con-

struction and reconstruction.

4.  The application of ASHT conductors provides corona 

losses  decrease  and  span  length  enhancement.  It 

reduces the total cost of overhead lines and ensures 

economic  eff ect  when  reconstructing  electrical  net-

works.

5.  Design  features  of ASHS/ASHT  conductors  reduce 

the load on all elements of overhead lines when re-

placing  conductors  on  existing  power  transmission 

poles.  Construction  of  new  overhead  transmission 

lines  is  necessary,  taking  into  account  that  exist-

ing  overhead  lines  operate  more  than  25-40  years 

and  are  obsolete.  The  discounted  payback  period 

for replacing standard conductors does not exceed 

5 years per 1 km of 110 kV electrical network located 

in the Volgograd region.

6.  The  applied  technology  of  plastic  deformation  pro-

vides a number of advantages noted by PJSC "Ros-

seti" Technical Council:

 

– increase in the fi ll factor of the conductor up to 92-97%;

 

– reduction  of  aerodynamic  load  (by  20-35%)  and 

oscillations self-damping;

 

– reduction of icing (by 25-40%) and lowering of oper-

ating conductor elongation in several times.  

Р

Fig. 5. Calculated spans for 150 kV Murmanskaya overhead transmission line

0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

350

400

450

500

Conductor’ suspension height, m

Span length, m

ACSR 240/32

ASHS 258/73

ASHS 295/44

ASHS 218/63

ASHS 216/33 

ASHS 214/61

Fig. 6. Dependence of current load 
on ambient temperature for ACSR and 
ASHS conductors with the same
diameter at the wind speed of 1.2 m/s

Ambient temperature, °C

I

per

, А

T

max 

= 150 °С

ASHS 258/73
ACSR 240/39

T

max 

= 80 °С

REFERENCES
1.  Gurevich L.M., Danenko V.F., Pronichev D.V., Trunov M.D. Modeling of electro-

magnetic  losses  in  various  steel-aluminum  conductors. 

ELEKTROENERGIYa. 

Peredacha i raspredelenie

 [ELECTRIC POWER. Transmission and Distribution], 

2014, no. 5(26), pp. 68-71. (in Russian)

2.  Loparev V.V., Obraztsov Yu.V. On the features of modern conductors for overhead 

power lines. 

Kabeli i provoda

 [Cables and Wires], 2014, no. 6(349), pp. 9-15. (in 

Russian)

3.  Kuryanov V.N., Sultanov M.M., Fokin V.A., Timashova L.V. Innovative high-ef-

fective conductors for power lines. 

Energiya edinoy seti

 [Energy of Unifi ed Grid], 

2016, no. 4(27), pp. 70-78. (in Russian)

 "Energoservis", LLC 

[email protected]    www.energoservise.com

The 25th CIRED Session 
Special issue, June 2019


Оригинал статьи: Effi ciency of Implementing Domestic Innovative High-strength and Hightemperature Steel-aluminum Сonductors

Читать онлайн

PJSC “Rosseti” maintains 44 thousand km of new conductor types or 1% of the total conductors’ length (4.5 million km). Among these conductors are self-supporting insulated wires of various modifi cations (more than 41 thousand km or 0.9% of the total conductors’ length) and bare conductors (less than 3 thousand km or less than 0.1% of the total conductors’ length). In addition, Russian modern power grid is characterized by physical deterioration and obsolescence of equipment. As a result, low energy effi ciency of power facilities takes place. The most important indicator of power system effi ciency is the level of energy losses. With the growing power losses in electrical networks, the number of urgent problems increases. Reconstruction and technical re-equipment of electrical
networks, application of advanced technical developments in design solutions, implementation of modern technologies and materials increasing reliability, durability and maintainability of power transmission lines are among these problems.

Поделиться:

«ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение» № 2(83), март-апрель 2024

Молниезащита оборудования ПС 110–220 кВ с помощью ОПН от набегающих волн перенапряжений с линий электропередачи при демонтаже грозозащитного троса на подходе к подстанциям

Воздушные линии
АО «Полимер-Аппарат»
«ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение»