Development of Cooperation in Power Industry

Page 1
background image

The MAIN JOURNAL for POWER GRID SPECIALISTS in RUSSIA


Page 2
background image

24

Digital Networks Construction 
in ROSSETI Group

Today power engineering development is largely determined by technological break-

throughs, taking place in various economy sectors. Within this framework, electric 

power industry task is not only to keep up with constant technology changes and 

power consumers requirements, but also to be one step ahead, as global energy 

changes with technological paradigm shift is instantly impossible [1].

F

rom a technological view-
point, the main develop-
ment  will  be  directed  to-
wards the automation 

and control systems in the next 
20-30  years.  It  is  impossible  with-
out increasing electric networks ob-
servability and manageability.

Electric power engineering 

should be improved and be on 
par with information technology in 
the digital economy. Electric net-
works of the future are digital net-
works [1].

According to ROSSETI Group 

de

fi

 nition, "Digital network is a set 

of  electric  grid  facilities  where  ef-
fective management key factor is 
digital data. The usage of high-
volume data processing and results 
analysis allows electric grid com-
panies to improve signi

fi

 cantly  the 

ef

fi

 ciency, availability and service 

quality for consumers".

Generation, transmission and 

processing  of  data  on  electric  grid 
conditions and electric network 
modes in digital form can be depict-
ed in the pyramid form (Figure 1).

The basic level of digitalization 

is the primary sensors, directly 
reading and transmitting informa-
tion about digital network param-
eters. For 0.4 kV electrical network, 
those primary sensors are digital 
energy meters (modern smart me-
ters). Currently, digital meters can 
perform not only direct functions of 
measuring amount of electric pow-
er, but also record various electrical 
characteristics required for intelli-
gent digital control of the network. 
In addition, the joint use of digital 
meters and modern protective de-
vices gives the greatest economic 
effect  associated  with  accounting 
and minimization of losses and 
consumers load managing.

Digitalization of 6 kV and above 

electrical  networks  is  achieved 
by ensuring observability and 
controll ability of facilities and relay 
protection and automation devices 
with innovative algorithms imple-
mentation.  As  known,  a  number 
of distribution network substations 
are operated without telesignali-
zation and telecontrol at the mo-

Figure 1. Digital network structure

Digital network management systems

Smart metering

Teleautomation

Connection/Cybersecurity

Managed network elements

Digital 
data 
mana-
gement

Digital 
data 
gene-
ration

DIGIT

AL

 NETWORK

Dmitriy 

GVOZDEV,

Chief Engineer,
PJSC ROSSETI

Vladimir

UKOLOV,

Deputy Director of the 
Situation and Analytical 
Center, PJSC ROSSETI

Dmitriy

KHIZHKIN,

Deputy Head of the 
Information Security 
Department,
PJSC ROSSETI

Evgeniy 

SELEZENEV,

Deputy Head of the 
Technical Department, 
PJSC ROSSETI

Aleksandr 

KARTUSHIN,

Chief Expert, 
Technical Solutions 
Division, Operational 
and Technological 
Management Department, 
PJSC ROSSETI

Valeriy 

KIRILENKOV,

Chief Expert, Division 
of Relay Protection 
and Automation 
Development, Operational 
and Technological 
Management Department, 
PJSC ROSSETI

power grids digit

aliz

a

tion


Page 3
background image

25

ment. Therefore, such substations 
can’t operatively react on changes 
of network operating modes. Te-
lemetry and telecommand of dis-
tribution network substations will 
ensure controllability within the 
shortest possible time and with 
minimal reconstruction of the main 
equipment. According to ROSSETI
Group viewpoint, the global re-
placement of outdated switching 
devices is not required. The main 
equipment will be replaced on 
a scheduled basis. Renovation will 
be coordinated with facility digitali-
zation plans. It is necessary to pro-
vide transmitting and processing 
of switching devices status data 
in the digital network by means of 
telecontrol devices. Switching con-
trol  should  ensure  normal  mode 
of  electrical  network.  Also,  digital 
network should provide automatic 
remote control instead of mechani-
cal actions conducted by network 
operator and substation electri-
cian.

The third digitalization level is 

the provision of all power grid facili-
ties and operational staff with reli-
able and safe digital communica-
tions. In addition, this digitalization 
level is meant to ensure continuous 
and integrated security of informa-
tion systems, telecommunications 
networks, software and soft hard-
ware designed for technological 
and production equipment monitor-
ing and management.

With the advent of the fourth in-

dustrial revolution, isolation of the 
technological network from any 
external systems can no longer be 
considered as an adequate protec-
tive measure. Digital network re-
quires the interfacing of corporate 
and technological automated con-
trol systems and greater freedom 
of communication. As a result, the 
technological network becomes 
more and more similar to the corpo-
rate one. They have the same use 
scenario and techniques in ope-
ration. Therefore, the threats to in-
dustrial automated control systems 
are similar to the threats of corpo-
rate systems.

At the same time, there is an-

other world trend: the growth of 
detectable vulnerabilities in the 
software of industrial automation 

systems.  Computer  attacks  on  in-
dustrial facilities become more so-
phisticated and dangerous.

For ensuring continuous and in-

tegrated security of information in-
frastructure, ROSSETI Group plans 
to implement a security strategy 
based on automating the detec-
tion and prevention of computer at-
tacks. It is planned to use machine 
learning algorithms and heuristic 
analysis, as well as technologies 
of the fastest possible recovery of 
information infrastructure.

Energy entities in ROSSETI 

Group have a task to create a se-
curity system for information infra-
structure facilities. The system will 
represent typical territorially distrib-
uted complex designed to detect 
and prevent computer attacks and 
eliminating the consequences of 
computer incidents.

ROSSETI Group uses such mo-

dern switching devices as automat-
ic reclosers, circuit breakers and 
disconnecting devices with motor 
drive to ensure the required level 
of power supply reliability, to lo-
cate damaged areas and to restore 
post-emergency network scheme. 
It  should  be  noted  that  digital  me-
ters with embedded switching de-
vices can be applied as control-
lable elements for 0.4 kV electrical 
networks.

The top of digital network is an 

automated control system includ-
ing display facilities of network ele-
ments and network management. 
The automated system is used for 
production assets management 
and repair of power grid facilities 
based on information on their tech-
nical condition.

Currently, ROSSETI Group has 

implemented a software package 
providing the possibility of tran-
sition to a risk-based model of 
production assets management 
(PAM). The task of the software 
is to optimize production program 
costs while improving equipment 
reliability (Figure 2).

The  task  is  executed  using 

risk-based asset management 
methodo logy including techniques 
for assessing main equipment 
technical condition, failure probabi-
lity and 

fi

 nancial  consequences 

of equipment failure. Important 
components of the production as-
sets management system are re-
mote monitoring and diag 

nostic 

subsystems using BigData tech-
nologies with predictive analy 

tics

functions.

PAM application scenario is 

implemented for risk-oriented ma-
nagement of information infrastruc-
ture  facilities  taking  into  account 
facility life cycle, technical main-
tenance organization and critical 
software updates installation.

Depending on power grid equip-

ment (Table 1), a different amount of 
digital technologies is required. For 
the purposes of effective decision-
making on equipment replacement 
ROSSETI Group has developed 
a matrix of technical solutions, con-
taining the rules for replacement 
of various equipment with modern 
digital analogs (Table 2).

The implementation of large-

scale power grid equipment up-
dating is planned for several years 
and therefore should be conducted 
step by step. It will gradually de-
velop hardware architecture, soft-

Figure 2. Existing and targeted relations between costs and reliability

High reliability

when low costs

COSTS

RELIABILITY

INDEXES

High reliability

when high costs

47th CIGRE Session 

Special issue, August 2018


Page 4
background image

26

ware and information support. In 
addition, large-scale plans require 
signi

fi

 cant 

fi

 nancial costs. It is obvi-

ous, that continuous replacement of 
all devices with digital ones will not 
provide the necessary economic 
effect. By this reasoning ROSSETI 
Group has implemented differenti-
ated approach to power grid facili-
ties digitalization:
•  The reconstruction is required 

for 35 kV and above substations 
aged 50 years or more;

•  The equipment upgrading is 

required for facilities aged 
20-50 years old. Before upgrad-
ing it is rational to increase 
observability of the facilities 
through ensuring remote sig-
naling of switching devices and 
telemetry on outgoing feeders;

•  For relatively "young" substa-

tions aged 10-20 years, it is 
possible to achieve a higher 
level  of  digitalization  by  orga-
nizing digital return transmission 
of remote measurement signals 
from the Network Management 
Center (signals transmission 
can be ful

fi

 lled by system opera-

tor or special-purpose software 
package);

•  The substations aged up to 

10 years already have elements 
of digital technologies. Automat-
ed control system organization 
is  the  only  task  to  accomplish 
there;

•  The substations under construc-

tion should be designed with the 
use of modern power and sec-
ondary equipment and digital 
data exchange based on IEC 
61850 protocols.

Within the framework of the digi-

tal network implementation project, 
four main digital technologies are 
studied by ROSSETI Group:
1. 

Network Management Center 
(NMC).

 Within the framework of 

this  direction,  technologies  de-
velopment for building a single 
information system of operation-
al, technological and situational 
management is under way. The 
system should ensure network 
model design, automated ope-
rational data collection at all 
management levels and well-
founded and well-timed ma-
nagement decisions.

2. 

Digital electrician.

 Within the 

framework of this direction, the 
automated control over opera-
tional and repair personnel ac-
tions and the transformation 
of document circulation into 
digital form are introduced (us-
ing mobile digital devices). By 
2030  it  is  planned  to  provide 
each electrician with means of 
augmented reality (all neces-
sary information for decision-
making will be displayed on the 
protective shield of electrician's
helmet).

3. 

Digital power distribution zone
(PDZ). 

Within the framework of 

this direction, basic commercial 
technologies prototypes of the 
target network business model 
are tested through integrated 
pilot projects. Also, economic 
model is veri

fi

 ed. All results are 

used for subsequent replica-
tion. All these developments 
are implemented in practice. 
First results of electric networks 

digitalization have shown that 
ROSSETI Group is on the right
track.

For example, digital tech-

nologies implementation in the 
Kaliningrad region (JSC "Yan-
tarenergo") in 2016 showed the
following positive effects:

 

– outages frequency and aver-

age power supply recovery 
time were decreased;

 

– undersupply of energy was 

reduced;

 

– power losses were reduced, 

hence electricity payments 
for ordinary consumers were 
decreased.

4. 

Digital substation.

 Within the 

framework of this direction, the 
following works are carried out:

 

– determination of optimal di-

gital substation structure (in-
cluding individual systems of 
the substation);

 

– statistics collection on equip-

ment reliability;

 

– personnel training, creation 

of competence centers;

 

– international  standards  re-

view and domestic regulatory 
documentation development.

For determining optimal digi-

tal substation structure, ROSSETI 
Group have developed three types 
of architecture:
1) the 

fi

 rst type of architecture

(Figure 3) is characterized by 
the following features:

 

– use  of  electromagnetic  mea-

suring current transformers;

 

– transmission  of  analog  data 

without digitizing;

 

– discrete signals reception 

and the transmission of 

POWER GRIDS 

DIGITALIZATION

Table 1. Digitalization level at substations of different generations

Year of substation 

construction 

Before 1970

1970-1989

1990-2009

After 2010

Number of 35 kV 

substations and 

above

3,523

10,183

2,057

622

Volume of works

The transition 

to digital tech-

nology when 

comprehensive 

reconstructing 

of substations

The transition to digital 

technology when sub-

stations upgrading

Substations observability 

enhancement until recon-

struction (implementation 

of remote measurement 

and signaling)

Observability enhancement (imple-

mentation of remote measurement 

and signaling) – digital data trans-

mission to Network Management 

Center

Implementation of telecontrol with 

automatic control system orga-

nizing (IEC Standard)

Substations al-

ready have ele-

ments of digital 

technology 

There is a need 

to organize an 

automatic con-

trol system 


Page 5
background image

27

Table 2. Matrix of technical solutions

Operating
equipment
with manual
control and analog
data transmission

Operational information management

 

system, SCADA

 (CIM)

Digital meters

Digital data acquisition and transmission

 

devices

Microprocessor-based relay protection and

 

automation with IEC protocol support

Microprocessor-based telemechanics with

 

IEC protocol support

Digital communication equipment (commu- nication through high-frequency channel)

Digital communication equipment (cellular

 

and radio communication)

Digital communication equipment (commu- nication through 

fi

 ber optic communication

 

line)

Sectionalizing points / reclosers

Measuring transformers with SF6 gas

 

insulation and cast insulation

Measuring transformers with SF6 gas

 

insulation and cast insulation and analog

 

converters or digital measuring trans- formers

High-voltage vacuum circuit breakers or

 

SF6 circuit breakers

High-voltage vacuum circuit breakers or

 

SF6 circuit breakers with digital transducers

Remote control drive

Disconnectors and grounding blades with

 

motor drive

6-35 kV load break switches with motor

 

drive

Substations not provided 

with software and hardware 

for equipment display and 

control

Induction meters

Electronic meters without 

remote data collection

Data acquisition and trans-

mission devices without sup-

porting IEC protocol

Lack of data acquisition and 

transmission devices

Relay protection and automa-

tion based on electrome-

chanical and microelectronic 

elements

Telemechanics based on 

electromechanical and micro-

electronic elements

Analog communication 

equipment (communication 

through cable communication 

line)

Analog communication 

equipment (communica-

tion through high-frequency 

channel)

Necessity of 6-35 kV electri-

cal network sectioning (power 

transmission lines)

Measuring transformers not 

satisfying metrological re-

quirements (accuracy class, 

transformation ratio, rated 

power, number of secondary 

windings, etc.)

High-voltage circuit breakers

not providing control and 

monitoring functions

Disconnectors and grounding 

blades not providing control 

and monitoring functions

6-35 kV load break switches 

not providing monitoring 

function

Installed equipment 

with remote control 

and digital data 

transmission

47th CIGRE Session 

Special issue, August 2018


Page 6
background image

28

control signals to switching 
devices without digitizing;

 

– use  of  IEC  61860-8.1

GOOSE station bus for com-
munication with Automa 

tic 

Process Control System 
(APCS);

 2) the second type of architecture 

(Figure 4) is characterized by 
the following features:

 

– use  of  electromagnetic  mea-

suring current transformers;

 

– conversion  of  analog  data 

into digital format according 
to IEC 61850-9.2 SV pro-
tocol;

 

– transmission  of  analog  sig-

nals to the substation auto-
mation devices via process 
bus in the format of IEC 
61850-9.2 SV protocol;

 

– conversion  of  discrete 

signals into digital format 
according to IEC 61860-8.1 
GOOSE protocol;

 

– transfer  of  discrete  signals 

to the substation automation 
devices via station bus in 
the format of IEC 61850-8.1 
GOOSE, MMS protocol;

3) the third type of architecture

(Fi gure  5)  is  characterized  by 
the following features:

 

– use of digital measuring 

transformers generating digi-
tal data in accordance with 
IEC 61850-9.2 SV protocol;

 

– transmission  of  analog  sig-

nals to the substation auto-
mation devices via process 
bus in the format of IEC 
61850-9.2 SV protocol;

 

– conversion  of  discrete  signals 

into digital format according 
to IEC 61860-8.1 GOOSE
protocol;

 

– transfer  of  discrete  signals 

to the substation automation 
devices via station bus in 
the format of IEC 61850-8.1 
GOOSE, MMS protocol;

 The choice of digital substa-

tion architecture depends on sub-
station layout complexity, number 
and type of equipment. It is obvious 
that small single-transformer sub-
stations shouldn’t be digitized ac-
cording to architecture no. 3. In this 
case architectures no. 1 or no. 2 
are convenient options. The maxi-
mum effect from architecture no. 3 

Figure 5. Architecture of digital substation type no. 3

Figure 3. Architecture of digital substation type no. 1

IEC 61860-8.1

GOOSE station bus

Automated power 

consumption 

measurement 

system

Teleme-

chanics

Circuit breaker 

opening/closing 

solenoids

Circuit breaker 

opening solenoid 2

Relay protection 

and automation 1

Relay protection 

and automation 2

Figure 4. Architecture of digital substation type no. 2 (SHS – software/hardware 

system; VT – voltage transformer, 

С

T – 

с

urrent transformer)

IEC 61850-8.1 

GOOSE, MMS 

station bus

IEC 61850-9.2

SV process

bus

Automated power 

consumption mea-

su rement system

Digital merging 

unit 1

Digital merging 

unit 2

SHS

 (VT for

capa citor unit)

SHS

 (CT for

capa citor unit)

SHS

 (VT for 

relay protection 

and automation)

SHS

 (CT for 

telemechanics)

SHS 1

 (CT for 

relay protection 

and automation)

SHS 2

 (CT for 

relay protection 

and automation)

Teleme-

chanics

Circuit breaker open-

ing/closing solenoids

Circuit breaker

opening solenoid 2

Relay protection 

and automation 1

Relay protection 

and automation 2

IEC 61850-8.1 

GOOSE, MMS 

station bus

IEC 61850-9.2

SV process

bus

Automated power 

consumption mea-

su rement system

Digital 

merging unit 1

Digital 

merging unit 2

Digital 

current 

transformer 1

Digital 

voltage 

transformer 1

Digital 

current 

transformer 2

Digital 

voltage 

transformer 2

Teleme-

chanics

Circuit breaker open-

ing/closing solenoids

Circuit breaker

opening solenoid 2

Relay protection 

and automation 1

Relay protection 

and automation 2

POWER GRIDS 

DIGITALIZATION


Page 7
background image

29

Table 3. ROSSETI Group digital substations projects under realization

Number 

of sub-

stations

Digital

technology

Characteristics

Subsidiaries and af

fi

 liates

Fully digital 
substations

4 sub-

stations 

(under way)

Digital 

substations

Support

IEC 61850-8.1/9.2,

IEC 60870-5-104

PJSC "MOESK"

 (110 kV "Medvedevskaya" sub station);

 

PJSC "IDGC of North-West" 

(110 kV "Yuzhnaya" 

substation);

 PJSC "Kubanenergo" 

(110 kV "Tuapse-

gorod" substation);

 PJSC "IDGC of Centre" 

(110 kV 

"Stroitel" substation)

Pilot 

implementation 

of certain 

digital 

substation 

technologies

4 sub-

stations

Digital relay 

protection, 

Digital automatic 

process control 

system

Support

IEC 61850-8.1/9.2,

IEC 60870-5-104

JSC "Tyumenenergo" 

(110 kV "Olimpiyskaya" 

substation);

 PJSC "IDGC of Siberia" 

(110 kV 

substation named after M. Smorgunov);

PJSC "MOESK"

 (35 kV "Babayki" substation); 

PJSC FGC UES 

(110 kV substation no. 301)

1 sub station

1 substation 

(under way)

Digital 

measuring 

transformers

Support

IEC 61850-9.2 

PJSC FGC UES 

(110 kV substation no. 301);

PJSC FGC UES 

(500 kV "Tobol" substation)

Industrial 

application of 
certain digital 

substation 

technologies

35 sub-

stations

Digital automatic 

process control 

system

Support

IEC 61850-8.1 

PJSC FGC UES; JSC "Yantarenergo"; JSC "Tyumen-

energo"; PJSC "IDGC of Centre"; PJSC "MOESK"; 

PJSC "IDGC of the South"; PJSC "IDGC of Volga"

More than

1000 sub-

stations

Data collection 

and transmission 

system

Support

IEC 60870-5-104

All subsidiaries and af

fi

 liates

Figure 6. 110 kV substation named after M. Smorgunov with digital control system

application can be achieved at sub-
stations with several transformers, 
complicated connection layout and 
a large number of connections.

ROSSETI Group implements 

digitalization pilot projects with vari-
ous types of architectures and sub-
stations in order to determine the 
criteria for choosing digital substa-
tions architecture.

It should be noted that ROSSETI

Group has already implemented 
substations using local digital so-
lutions. Such substations provide 
power  supply  of  Moscow  Energy 
Ring  and  Winter  Olympics  facili-
ties in Sochi. In addition, a number 
of digital substations projects with 
various architectures (no. 2 and 

no. 3) have been implemented for 
testing design decisions and gain-
ing operation experience. 110 kV 
substation named after M. Smor-
gunov with digital control system 
according to architecture no. 2 was 
put into operation in December 
2017 in Krasnoyarsk.

500 kV digital switching "Tobol" 

substation using data transmission 
in accordance with architecture no. 
3 was put into operation in the Tyu-
men Region in 2018. The similar 
facilities were also built in the Mos-
cow region.

Eventually, ROSSETI Group in-

tends to carry out power grid digital 
transformation  by  2030.  It  allows 
ROSSETI Group to get manage-

able, intelligent electric grid with 
a high level of power supply reliabil-
ity and a number of positive internal 
effects.

The creation of digital networks, 

even according to the most cau-
tious forecasts, will result in reduc-
tion power losses, capital expendi-
tures and operating expenses by 
30%. SAIDI and SAIFI reliability 
indicators should be improved by 
50%.  

REFERENCES

1.  Livinsky P.A., Gvozdev D.B. Inno-

vative  power  system  of  Russia  in 
2050. Energeticheskaya politika 
[Energy Policy], 2017, no. 6. pp. 16-
19. (in Russian)

47th CIGRE Session 

Special issue, August 2018


Оригинал статьи: Development of Cooperation in Power Industry

Читать онлайн

Russian companies actively work to set up interstate integration with power engineers and electrical engineering companies of the world. The most important targets of the work are European countries and rapidly developing regions of Asia.

Поделиться:

«ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение» № 3(78), май-июнь 2023

Ранговый анализ и ансамблевая модель машинного обучения для прогнозирования нагрузок в узлах центральной энергосистемы Монголии

Энергоснабжение / Энергоэффективность Цифровая трансформация / Цифровые сети / Цифровая подстанция Мировой опыт
Русина А.Г. Осгонбаатар Т. Матренин П.В.
«ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение»